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a  b  s  t  r  a  c  t

Derailments  are  the most  common  type  of train  accident  in  the United  States.  They  cause  damage  to
infrastructure,  rolling  stock  and  lading,  disrupt  service,  and  have  the  potential  to cause  casualties,  and
harm  the  environment.  Train  safety  and risk  analysis  relies  on  accurate  assessment  of  derailment  likeli-
hood.  Derailment  rate  – the  number  of derailments  normalized  by traffic  exposure  –  is  a  useful  statistic  to
estimate  the likelihood  of a derailment.  Despite  its  importance,  derailment  rate  analysis  using  multiple
factors  has  not  been  previously  developed.  In  this  paper,  we  present  an  analysis  of  derailment  rates  on
Class  I railroad  mainlines  based  on data  from  the  U.S.  Federal  Railroad  Administration  and  the major
ailroad safety
azardous materials transportation
isk analysis

freight  railroads.  The  point  estimator  and  confidence  interval  of  train  and  car  derailment  rates  are devel-
oped  by  FRA  track  class,  method  of  operation  and  annual  traffic density.  The  analysis  shows  that  signaled
track  with  higher  FRA  track  class  and  higher  traffic  density  is  associated  with  a  lower  derailment  rate.
The  new  accident  rates  have  important  implications  for safety  and risk  management  decisions,  such as
the routing  of  hazardous  materials.
. Introduction

Derailments are the most common type of train accident in the
nited States. They cause damage to infrastructure, rolling stock
nd lading, disrupt service, and have the potential to cause casual-
ies and harm the environment. Understanding the most important
actors affecting derailments is critical to development of effec-
ive risk reduction strategies. Train safety and risk analysis relies
n accurate estimation of derailment rate, which is defined as the
umber of derailments normalized by some metric of traffic expo-
ure, such as train-miles, car-miles or gross ton-miles (Nayak et al.,
983; Treichel and Barkan, 1993; Anderson and Barkan, 2004; Liu

t al., 2011).

Highway safety researchers have conducted a number of studies
uantifying the relationship between accident rates and roadway
esign. These studies have considered the effects of road curvature,
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traffic volume, grade, shoulder width, number of lanes and other
factors (e.g., Miaou, 1994; Maher and Summersgill, 1996; Hauer,
2001; Lord et al., 2005; Lord, 2006; Mitra and Washington, 2007).
The earliest example of a comprehensive analogous study of rail-
road accident rates in the United States was  conducted by Nayak
et al. in the 1980s (Nayak et al., 1983). Using analyses of accident
frequency and rail traffic volume, they found a strong statistical
correlation between FRA track class and derailment rate. A subse-
quent unpublished study by Treichel and Barkan (1993) found a
similar result and Anderson and Barkan (2004) used new data to
develop updated estimates. All of these studies found that higher
FRA track classes had lower derailment rates, varying by more than
an order of magnitude. This relationship was not surprising; higher
FRA track classes are intended to ensure safe operation at higher
operating speeds and therefore require a variety of more stringent
engineering safety and maintenance standards (FRA, 2011a).

Nayak et al’s (1983) estimates, and the updates cited above, have
been used by railroads, chemical companies, government agencies,
researchers and others to address a variety of risk analysis and man-

agement questions (Glickman and Rosenfield, 1984; Rhyne, 1994;
CCPS, 1995; ADL, 1996; STB, 2003; Kawprasert and Barkan, 2008,
2010). However, as the importance and sophistication of these
questions has grown, so too has the importance of their accuracy.
Simple predictive models of derailment rate based solely on a sin-
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le parameter, FRA track class, might not satisfactorily account for
ll the pertinent factors. This led to closer scrutiny of other possible
actors that might affect the relationship between FRA track class
nd derailment rate. Developing a better understanding of such
elationships is important for improved railroad risk management
ractices.

Since 1980 the U.S. railroad derailment rate has declined from
.98 derailments per million train miles, to 1.63 in 2014, an 82%
eduction (FRA, 1980, 2015). These derailment rates reflect statis-
ics for all FRA track classes combined; however, they do not permit
valuation of the relative rate on different track classes, nor the
ossible effect of other factors. The relative importance of accident
auses correlated with different track classes may  co-vary with
ther factors and may  shift as a result of changes in various factors
Anderson and Barkan, 2004). There is ongoing interest in improv-
ng rail safety and new concerns have been raised regarding the risk
f rail transport of hazardous materials due to several fatal release
ccidents involving toxic inhalation hazard (TIH) materials in the
id-2000s, and more recent accidents resulting in large releases

f flammable liquids. This prompted renewed interest in a more
etailed understanding of the factors affecting derailment rate (Liu
t al., 2012; Liu, 2015). In the same time frame, post-9/11 security
oncerns led the US Department of Transportation to promulgate
ew regulations that required railroads to conduct, “transportation
oute analysis, alternative route analysis, and route selection” for
IH materials (DOT, 2008). This led to new consideration of how
o calculate derailment rate and whether it provided a sufficiently
etailed means of assessing localized risk. Research by the authors
f this paper suggested that other factors not previously consid-
red might be affecting it as well, notably method of operation (i.e.
raffic control system) and traffic density.

Previous constraints on data systems and availability had lim-
ted the ability to consider more fine-grained questions regarding
actors that might co-vary with track class and affect derailment
ate. Furthermore, these analyses had used relatively simple statis-
ical techniques that were not capable of detecting the complex
elationship between derailment rates and multiple influencing
actors. To address these questions, a new dataset was developed
hat contained information on FRA track class, method of operation
nd traffic density.

. Data and variables

.1. Derailment and traffic data

Data for the derailment rate analysis were obtained for the major
reight railroads operating in the U.S. for the years 2005 to 2009.
hese railroads account for approximately 69% of route miles and
8% of carloads transported on U.S. railroads (AAR, 2013). The anal-
sis in this paper focuses on train derailments, and excludes other
ypes of train accidents, such as collisions or highway-rail grade
rossing incidents.

Data on the number and cause of derailments came from the
.S. Federal Railroad Administration (FRA) Rail Equipment Accident

REA) database (FRA, 2015). This database records all accidents that
xceed a specified monetary damage cost to on-track equipment,
ignals, track, track structures, and roadbed (FRA, 2011a). Each acci-
ent record includes information on approximately 50 different
ariables detailing the circumstances of the accident. Among these
re the FRA track class, method of operation and the annual traffic

ensity measured in annual gross tonnage at the accident location.
owever, having traffic density data for FRA-reportable accident

ocations only is insufficient for proper estimation of derailment
ates because it does not permit understanding of the entire net-
ork under consideration. In particular, comprehensive data on
 Prevention 98 (2017) 1–9

the exposure of rail traffic to different combinations of infras-
tructure and operating conditions are needed to develop accurate
estimates of accident rates. Therefore, each railroad provided addi-
tional data for their entire, mainline network. In total, there were
1420 freight-train derailments and 17.5 trillion gross ton-miles of
traffic (corresponding to more than 2.5 billion train miles) reported
for the mainline network in the 2005–2009 time period covered in
this analysis.

As discussed above, the train safety and traffic data came from
different sources; the former came from the FRA (2015) and the
latter from major freight railroads. Although the various datasets
contained all of the necessary information and variables needed,
their structure and organization differed in terms of segment-
specific information. Furthermore, they did not contain consistent
geographical information system (GIS) information. Assembling
and integrating these databases required considerable effort and
care. The lack of consistent geo-coding constrained our ability to
reliably relate the location of each derailment to the exact network
location for which we  had traffic data. This limited our ability to
conduct a segment-specific train derailment rate analysis in the
manner commonly used in highway accident rate analysis (Miaou,
1994; Maher and Summersgill, 1996; Miaou and Lord, 2003) so we
developed an alternative approach.

As discussed above the FRA (2015) database records all the
parameters of interest in the study and the railroad databases
provided reliable system-wide traffic information for the same
parameters. Consequently, we  approached the problem as a cross-
classified categorical modeling problem using aggregated data
classified by the predictor variables of interest (Fienberg, 1980;
Agresti, 2007). We  then conducted a regression analysis based
on the total number of derailments and the corresponding traf-
fic exposure for each combination of predictor variables. A detailed
explanation of the methodology is presented in Section 3.

2.2. Explanatory variables

The selection of the following variables and their categorization
was based on insights from previous research and questions posed
by rail industry experts. Furthermore, the three predictor variables
are among the risk factors that the US DOT Pipeline and Hazardous
Materials Safety Administration (PHMSA) requires railroads to con-
sider in their hazardous materials transportation risk management
process (PHMSA, 2008).

2.2.1. FRA track class
The FRA specifies track quality standards or “track classes”

for operation of freight and passenger trains at different max-
imum allowable operating speeds (FRA, 2011a). There are five
principal track classes commonly used by U.S. freight railroads,
ranging from class 1 with the lowest maximum allowable freight-
train speed (10 mph), to class 5 with the highest (80 mph). These
classes include specifications for track structure, geometry, inspec-
tion frequency and method of inspection, with more stringent
requirements for higher track classes. The FRA standards represent
minimum requirements; in fact, railroads often maintain various
sections of their infrastructure to standards that exceed the min-
imum required by the FRA. This introduces additional variance in
statistical analyses of the relationship between track quality and
derailment rates within the same track class (El-Sibaie and Zhang,
2004).
2.2.2. Method of operation
When this study was  conducted, the FRA recorded 12 different

values for method of operation. For the purposes of our analysis,
we were interested in a higher level categorization, specifically,
whether the track had a system of automatic signaling in place or
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ot (i.e. “signaled” versus “non-signaled” territory, respectively) so
e collapsed the 12 categories to one of these two conditions. Since

hen, FRA (2011b) has simplified their system so it only records
hese two categories as well. This categorization was also identified
s one of the risk factors specified by the Pipeline and Hazardous
aterials Safety Administration (PHMSA) for railroad hazardous
aterials route analysis and selection (PHMSA, 2008). Approxi-
ately 60 percent of U.S. mileage and 80 percent of rail traffic

perates on signaled trackage (FRA, 2008). Such trackage uses low-
oltage, electric current in the rails (known as “track circuits”) to
etect the presence of trains in a given section. An important sec-
ndary benefit of track circuits is that they enable detection of
everal types of infrastructure problems, most notably in the con-
ext of this study, are broken rails, which are the leading cause
f major derailments on U.S. railroad mainlines (Dick et al., 2003;
arkan et al., 2003; Liu et al., 2012).

.2.3. Traffic density
Traffic density was the third variable included in the model.

rack with a higher traffic density receives more frequent track
aintenance leading to higher track quality (FRA, 2011a; Peng,

011). Railroad traffic density represents the total weight of all
ocomotives, rolling stock and lading traversing a given section of
rack and is commonly measured in million gross tons (MGT). The
raffic density variable was assigned two values, <20 MGT  annual
raffic and ≥20 MGT. The demarcation at 20 MGT  was  selected
ecause it represents the average annual track traffic density on
ll U.S. Class I railroad mainlines (2005-2009) so the two classifi-
ations indicate, below average traffic density and above average,
espectively. This level is also the threshold used by the Associa-
ion of American Railroads as their criterion for high-density track
AAR, 2016). We  considered a finer grained approach to this param-
ter but were constrained by the fact that railroads’ traffic density
eporting practices vary. Some railroads provided traffic data for
ach individual track, while others could only provide total traffic
ensity for all tracks on the same corridor. This limited our abil-

ty to reliably conduct a finer grained classification of the traffic
n each track hence we used a simple, binary classification for this
arameter.

As mentioned above, FRA track class is determined by speed
f operation. Maximum allowable speed along a route will fluctu-
te because of civil speed restrictions that are due to curvature,
nfrastructure features and various other permanent operating
estrictions. Railroads indicate allowable speed for each segment
f track in their operating timetables and FRA uses these timetable
peeds as the basis for track class and the corresponding regula-
ory requirements for track safety (FRA, 2011a). Segments with
ower allowable speed will generally be classified as lower FRA
rack classes. However, on high-traffic-density routes these lower-
peed sections are generally designed and maintained to the same
igh standards as adjacent sections on the route with higher speeds
nd track classes, commensurate with the higher volume of traffic
sing them.

Having assembled the data from the various sources and ensur-
ng its consistency with regard to the predictor variables of interest,

e prepared two 5 × 2 × 2 matrices for the rail network and time
eriod studied, one for derailments, and the other for traffic. These
atrices were classified according to each combination of FRA track

lass, method of operation and traffic density as follows:

FRA Track Class: 1, 2, 3, 4, 5;

Method of Operation: signaled and non-signaled;
Annual Traffic Density: <20 MGT  and ≥20 MGT.

Table 1 presents the distribution of freight-train derailment and
raffic data by the predictor factors used in our study. Approx-
 Prevention 98 (2017) 1–9 3

imately 54 percent of the derailments and 85 percent of traffic
exposure are on higher FRA track classes (class 3 to class 5), signaled
track with annual traffic density above 20 MGT. This concentra-
tion of traffic reflects industry practice to maximize operational
efficiency. Lines with higher traffic are designed and maintained
to achieve greater speed, safety and capacity. Therefore, most
of the cells in the matrix are based on other, lower speed and
density conditions. In our study, we considered all possible com-
binations of predictor variables, with each categorical predictor
variable appearing equally (once). This approach was used to avoid
collinearity problems between predictor variables.

Note that traffic volume (ton-miles) is an exposure variable dis-
tinct from the predictor variable used in our model. In the next
section we describe the negative binomial regression model that
was developed to analyze mainline freight-train derailment rate.

3. Analysis

3.1. Train derailment rate

This paper uses negative binomial (NB) regression model to ana-
lyze freight-train derailment rates on U.S. Class I railroad main
tracks. The NB model has been widely used in accident rate anal-
ysis in highway transportation (e.g., Miaou, 1994; Hauer, 2001;
Wood, 2002; Lord et al., 2005; Lord, 2006; Oh et al., 2006; Mitra
and Washington, 2007) and its basic framework is as follows:

Y∼Poisson(�) (1)

�∼Gamma(f,
f

m
) (2)

m = exp

(
k∑
p=0

bPXP

)
M (3)

Where:
Y = observed number of derailments
m = estimated number of derailments
bp = pth parameter coefficient
Xp = pth explanatory variable
M = traffic exposure (gross ton-miles)
f = inverse dispersion parameter
The confidence intervals of estimated derailment rates using

the Poisson regression or negative binomial regression models are
developed by Wood (2005) (Table 2).

Z = exp(b0 + btrkXtrk + bmooXmoo + bdenXden) (4)

Where:
Z = estimated derailment rate per gross ton-miles
Xtrk = FRA track class (1 to 5)
Xmoo = method of operation (1 for signaled, 0 for non-signaled)
Xden = annual traffic density level (1 for ≥ 20 MGT, 0 for < 20

MGT)
b = parameter coefficients
All mainline derailment locations in the network were included

and categorized in our dataset. Similarly, traffic data for the entire
network were included, regardless of whether an accident occurred
at a particular location. Thus, the traffic data are a comprehensive
representation of the mainline operating and infrastructure con-
ditions that rail traffic was  exposed to during the study period. In
contrast to highway safety analysis, which is typically based on

short, uniform-length road sections using public data, the railroad
accident data available required us to use a different method to
satisfactorily resolve constraints in the data structure regarding its
granularity and consistency, especially considering that the data
came from different sources.
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Table 1
Distribution of (a) derailment and (b) traffic data by predictor variables.

Annual Traffic Density (MGT) Method of Operation (MO) FRA Track Class (TC)

1 2 3 4 5 TC Total

(a)
<20 Non-Signaled 2.00% 3.50% 4.40% 3.70% n/aa 13.70%

Signaled 1.30% 2.50% 3.30% 4.60% 0.40% 12.20%
MO  Total 3.40% 6.10% 7.70% 8.30% 0.40% 25.80%

≥20  Non-Signaled 0.70% 1.80% 2.00% 6.00% 0.50% 11.00%
Signaled 2.60% 6.70% 11.30% 31.00% 11.60% 63.20%
MO  Total 3.30% 8.50% 13.20% 37.00% 12.10% 74.20%

Total  Non-Signaled 2.70% 5.40% 6.30% 9.70% 0.50% 24.60%
Signaled 3.90% 9.20% 14.60% 35.60% 12.00% 75.40%
MO  Total 6.70% 14.60% 20.90% 45.30% 12.50% 100.00%

(b)
<20  Non-Signaled 0.10% 0.50% 0.90% 1.60% *n/a 3.20%

Signaled 0.10% 0.30% 1.20% 3.30% 0.30% 5.20%
MO  Total 0.20% 0.90% 2.10% 4.90% 0.30% 8.40%

≥20  Non-Signaled 0.20% 0.40% 0.80% 2.10% 0.20% 3.70%
Signaled 0.50% 2.00% 8.20% 47.80% 29.40% 88.00%
MO  Total 0.70% 2.40% 9.00% 49.90% 29.70% 91.60%

Total  Non-Signaled 0.30% 0.90% 1.70% 3.70% 0.20% 6.90%
Signaled 0.50% 2.40% 9.40% 51.10% 29.70% 93.10%
MO  Total 0.80% 3.30% 11.10% 54.70% 30.00% 100.00%

a There were no instances of non-signaled, Class 5 track with less than 20 MGT  of annual traffic.

Table 2
95% confidence interval for train derailment rate estimate (Wood, 2005).

Poisson

m exp[XTb∗ ± 1.96
√
Var(h∗)]

y

[
0, �m∗ +

√
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√
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Negative binomial

m exp[XTb∗ ± 1.96
√
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√
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f ∗ +

ote: h∗ = b0
∗ + b1

∗X1 + ... + bk
∗Xk + log(M)(the parameter with * represents an es

We  developed an aggregation-based approach that classifies the
otal number of train accidents and total traffic exposure (includ-
ng locations with zero accidents) into several categories by the
ombination of the three predictor variables. In the aggregation-
ased analysis, the total derailment count in each category is a
ufficient statistic for estimating the unknown parameters, which
eans no information is lost by aggregating Poisson-based accident

ount. Put another way, the “effective sample size” in the aggre-
ated model is related to the aggregated counts and the total traffic
xposure, instead of the number of categories. Similar applications
f the aggregated approach in log-linear modeling can be found

n the literature (e.g., Abdel-Aty and Abdelwahab, 2000; Agresti,
007). The theoretical rationale and limitations of this aggregation
ethod are presented in Appendix A.

The estimated parameter coefficients were developed using the
aximum likelihood method (Agresti, 2007) and all three vari-

bles were found to significantly affect freight-train derailment
ates (Table 3). The model diagnostics were evaluated and found
o be adequate using a statistical criterion called Deviance (P-
alue = 0.01). Although FRA track class is an ordinal categorical

ariable, the preliminary data analysis suggested that there was
n inverse linear relationship between logarithmic derailment rate
nd FRA track class (parameter coefficient for track class 1 is 2.486;
or track class 2 is 1.998; for track class 3 is 1.269; for track class 4 is
r)

0.498; for class 5 is 0 by setting class 5 as the reference class), given
the other two predictor variables. This indicates that train derail-
ment rate has an exponential relationship with FRA track class if
treated as a continuous variable. A similar relationship has been
found by other researchers using earlier data (Nayak et al., 1983;
Anderson and Barkan 2004; English et al., 2007)

A special case of the negative binomial model is the Poisson
model with a dispersion parameter of zero (Hilbe, 2007). To test
whether this was appropriate for our data, we calculated the Wald
z-score by dividing the estimated dispersion parameter by its
standard error. The calculated z-score was  0.77 (0.0048/0.0062),
which fails to reject the hypothesis of a zero dispersion parame-
ter (p = 0.44). This indicated that there is no significant difference
between the Poisson model and negative binomial model in fit-
ting the data. Thus we  used the confidence intervals for the Poisson
model (Table 2) to estimate the 95% confidence intervals for train
derailment rates (Fig. 1 and Table 4). It is evident that all three
variables are having a substantial effect:
1) The higher the FRA track class, the lower the train derailment
rate.

2) Signaled track has a lower derailment rate than non-signaled
track.

3) Track with higher traffic density has a lower derailment rate.
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Table  3
Parameter coefficient estimates of freight-train derailment rate per billion gross ton-miles on Class I mainlines, from 2005 to 2009.

Parameter Estimate Standard Error Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq

b0 (Intercept) 0.9201 0.1115 0.7016 1.1386 68.11 <0.0001
btrk (Track Class) −0.6649 0.0341 −0.7318 −0.5981 380.37 <0.0001
bmoo (Method of Operation) −0.3377 0.0974 −0.5286 −0.1469 12.03 0.0005
bden (Annual Traffic Density) −0.7524 0.0859 −0.9208 −0.5840 76.72 <0.0001
Dispersion 0.0048 0.0062

Notes: 1) Over the five-year period covered in this study there were a total of 1420 derailments and 17.5 trillion gross ton-miles of freight train traffic assigned to the 20
different categories in the cross-categorical matrix used in the statistical analysis (one cell in the matrix: <20 MGT, Non-Signaled, Class 5 Track had no accidents or traffic
resulting in a total of 19 cells used to conduct the analysis). 2) Traffic exposure is measured by gross ton-miles, and annual traffic density is measured by gross tonnage on a
segment.

Table  4
Estimated Class I mainline freight-train derailment rate per billion gross ton-miles, 2005–2009 (the numbers in the parenthesis represent 95% confidence intervals).

Annual Traffic Density (MGT) Method of Operation FRA Track Class

Class 1 Class 2 Class 3 Class 4 Class 5

<20 Non-Signaled 1.29 0.66 0.34 0.18 n/aa

(1.086, 1.534) (0.574, 0.768) (0.295, 0.395) (0.148, 0.209)
Signaled 0.92 0.47 0.24 0.13 0.06

(0.737, 1.151) (0.395, 0.568) (0.208, 0.286) (0.106, 0.147) (0.053, 0.078)

≥20  Non-Signaled 0.61 0.31 0.16 0.08 0.04
(0.495, 0.747) (0.260, 0.376) (0.134, 0.194) (0.067,0.102) (0.033, 0.055)

Signaled 0.43 

(0.361, 0.521) 

a There were no instances of non-signaled, Class 5 track with less than 20 MGT  of annu

Fig. 1. Estimated Class I mainline freight-train derailment rates by FRA track class,
method of operation and annual traffic density (error bars indicate 95% confidence
intervals).
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the average number of cars derailed per train derailment.
The lack of a relationship between severity and the first two

variables is not surprising because, ceteris paribus, neither would
be expected to affect the kinetic energy of a derailment and con-
The observation that a higher track class is associated with
 lower train derailment rate is consistent with previous stud-
es (Nayak et al., 1983; Treichel and Barkan, 1993; Anderson and
arkan, 2004). However, in addition to FRA track class, method of
peration and traffic density both had a strong, significant rela-
ionship with derailment rate. As mentioned above, signaled track
egments have track circuits to detect broken rails, thereby poten-
ially reducing the likelihood of derailments due to this cause.
urthermore, given the same track class and method of operation,
erailment rate is inversely related to traffic density level. There
re several possible explanations for this. As mentioned above rail
ines with higher traffic density receive more frequent track inspec-
ion and maintenance (Zarembski and Palese, 2010; Sawadisavi,
010; Peng, 2011) irrespective of speed (i.e. FRA track class). Busier

ines may  also have a greater number and variety of wayside defect
etectors installed (Schlake, 2010) thereby reducing the incidence

f certain infrastructure and equipment-caused train accidents.
0.22 0.11 0.06 0.03
(0.195, 0.255) (0.104, 0.127) (0.053, 0.066) (0.026, 0.035)

al traffic.

3.2. Railcar derailment rate

3.2.1. Calculation of railcar derailment rate
In addition to train derailment rate, railcar derailment rate is

also of interest. This is generally measured as the number of cars
derailed per unit of traffic exposure and represents the likelihood
that an individual railcar is involved in a derailment. Anderson and
Barkan (2004) estimated average car derailment rate by multiply-
ing train derailment rate by the average number of cars derailed
per derailment:

C∗ = m∗ × D∗

M
(5)

Where:
C* = estimated car derailment rate per unit of traffic exposure
m* = estimated train derailment count given traffic exposure
D* = average number of cars derailed per train derailment

(severity)
M = traffic exposure

3.2.2. Derailment severity
The average number of cars derailed in derailment is a metric

of its severity (Nayak et al., 1983; Saccomanno and El-Hage, 1989;
Barkan et al., 2003; Anderson and Barkan, 2004; Liu et al., 2013a,b)
and can be calculated using data from the same FRA REA database
used to address other questions in this paper. We  conducted an
analysis of variance (ANOVA) to determine if there was  a rela-
tionship between derailment severity and the three explanatory
variables being considered. We  found no significant relationship
with Method of Operation (F statistic = 1.21, degrees of freedom = 1,
P = 0.27) or traffic density (F statistic = 0.57, degrees of freedom = 1,
P = 0.6). However, we did find a significant relationship between
FRA track class and derailment severity (F statistic = 4.78, degrees
of freedom = 4, P < 0.01). The higher the FRA track class, the greater
sequently its severity, whereas the third one does. Track class is
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irectly related to maximum allowable operating speed and pre-
ious research has shown a relationship between severity and
erailment speed, due in part to the greater kinetic energy (Nayak
t al., 1983; Barkan et al., 2003; Anderson and Barkan, 2004) and
ith FRA track class (Liu et al., 2011). Thus, track-class-specific

umber of cars derailed was estimated and used to estimate car
erailment rate.

.2.3. Variance in estimated railcar derailment rate
We also calculated the variance in the car derailment rate esti-

ate by accounting for the uncertainty in train derailment rate and
umber of cars derailed. A general approach to estimate the vari-
nce of multiple random variables was originally developed in the
960s (Goodman, 1962). Since then, it has been used in studies
f highway safety (Lord, 2008; Geedipally and Lord, 2010) but we
re unaware of its application to estimation of railcar derailment
ate. Train derailment frequency and severity were assumed to be
ndependent variables, and the variance in estimated car derail-

ent rate, denoted by Var(C*), was estimated using the following
quation (derived in Appendix B):

ar(C∗) = [E(m∗)]2Var(D∗) + [E(D∗)]2Var(m∗) + Var(m∗)Var(D∗)
M2

(6)

here:
Var(C*) = variance of estimated car derailment rate
E(m*) = expected value of train derailment count
Var(m*) = variance of estimated train derailment count
E(D*) = expected value of number of cars derailed per derailment
Var(D*) = variance of estimated number of cars derailed per

erailment
M = traffic exposure

. Implications of the Results

Multivariate statistical analyses of North American train derail-
ent data, combined with information on FRA track class, method

f operation and traffic density, showed that each of these vari-
bles had a strong, significant effect on derailment rate. Previous
tudies had only found an effect of track class, but did not consider
he other two variables. We  also found that average derailment
everity was unaffected by method of operation or traffic den-
ity, but was strongly related to FRA track class, consistent with
everal previous studies (Nayak et al., 1983; Barkan et al., 2003;
nderson and Barkan, 2004). Despite the higher average number
f cars derailed in accidents on higher track classes, car derailment
ate is still lower. This is because the reduction of train derailment
ate more than offsets the increase in derailment severity.

Accurate calculation of train accident rate has important impli-
ations for a number of railroad industry safety policy, operating
ractice, risk management and resource allocation decisions. It is
lso an important aspect of federal regulatory development, review
olicies and decision making. The first attempt to develop nation-
ide, track-class-specific accident rates was conducted by Nayak

t al. (1983) in a study conducted for the US DOT Federal Rail-
oad Administration. Railroad train safety had been deteriorating
n the years prior to economic deregulation of the US rail industry
n 1980 and there was interest in understanding the effect of vari-
us potential contributing factors. Meanwhile, in 1975 the FRA had

mplemented new train accident data recording requirements and
ayak et al. used these data, along with data from other sources,

o try and understand the quantitative relationship between track

lass and derailment rate.

At the same time, there was increasing interest in the risk
ssociated with rail transport of hazardous materials such as toxic-
nhalation-hazard materials and flammable gases (Andrews, 1980;
effen, 1980). In the absence of more specific data, these studies
 Prevention 98 (2017) 1–9

relied on an average railroad derailment rate. Although such an
approach may  enable nationwide estimates of average risk, most
rail transport risk management decisions require greater preci-
sion. For example understanding localized differences in risk due
to differing track quality or development of risk profiles for a route
or region. Nayak et al. recognized that both national, and geo-
graphically specific estimates of train safety and derailment risk
required finer grained understanding of the key factors affecting
risk. Since that time, both the private and public sectors have
made extensive use of the FRA database, the Nayak et al. statis-
tics, and subsequent revisions and refinements of their analyses
using track-class-specific derailment rates to conduct safety and
risk assessments at both the local and national level (Glickman and
Rosenfield, 1984; CCPS, 1995; STB, 2003; Kawprasert and Barkan,
2010).

Part of the track-class effect observed in previous studies was
likely due to co-variance with the other two variables described
in this paper, but even when that is accounted for, FRA track class
still has a strong effect. The results presented in this paper indi-
cate that track class is one of (at least) three different factors that
are significantly related to derailment rate. This new, three-factor
derailment rate model provides better resolution for estimating
mainline derailment rates on U.S. railroads and has implications
for rail safety policy and practice compared to use of the earlier
single-factor, track-class-specific model.

5. Discussion

The current variable categorization and data matrix structure is
constrained by the format of the data that railroads record and were
able to provide. For example, the five FRA track classes are specified
by their Track Safety Standards (FRA, 2011a). Dark territory (non-
signaled) and signalization represent the two  basic types of method
of operation. The annual traffic density demarcation (i.e., 20 MGT
in this study) represents the average level of traffic on Class 1 rail-
road mainlines and is designated by AAR (2016) as the threshold for
“High-Density Track”. As discussed above finer-grained differenti-
ation of the data categories, especially traffic density, would have
enabled a more robust statistical analysis and greater resolution in
the results. However, because the different railroads have different
definitions and procedures for recording their data, we  were con-
strained in the level of resolution that we  had confidence in, hence
the 20 MGT  demarcation, which we do believe is reliable. The three
categorical variables used, and categories within each, are institu-
tionally constrained to conform to the U.S. railroad industry and
government practice, which in turn defines the nature of the data
provided by the railroads.

As a consequence of the data grouping there was  considerable
heterogeneity in the distribution of the traffic in the 2 × 2 × 5 matrix
developed for the analysis. In particular, just three cells, FRA track
classes 4 and 5, with signals and greater than 20 MGT  traffic density,
accounted for approximately 77 percent of the traffic exposure. This
is because lines with higher traffic are designed and maintained to
achieve greater speed, safety and capacity. All of these co-vary with
the parameters of the three matrix cells referenced above so it is not
surprising that the bulk of the traffic was  on portions of the network
with these conditions. As a result, most of the data points in the
matrix are based on the other, lower density conditions, thereby
introducing some additional uncertainly in the regression results.

We are hopeful that this paper will lead to further research

in which some of this uncertainty can be resolved through more
refined recording of data. Ideally, this would involve segment-
specific traffic exposure and derailment data from each railroad,
using a consistent data format and organizational structure. In par-
ticular, we hope to have a more detailed data for traffic density.
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his would allow delineation of key predictor variables into finer
evels, and development of more balanced derailment and traffic
istributions for statistical analysis.

. Conclusion

This paper describes an analysis of train and railcar derail-
ent rates on Class I railroad mainline tracks in the United States.

RA track class has been the principal factor used previously to
uantitatively assess, location-specific derailment rate in rail trans-
ortation safety and risk studies for over three decades. The analysis
escribed here accounts for two new factors (method of operation
nd annual traffic density) that were also found to have a strong
nd significant effect.

The U.S. Class 1 railroads’ derailment rate has continued to
ecline since the data for this study were collected (Liu, 2015)
nd the derailment rate in 2014 was estimated to be about a third
ower than the average rates presented here (Barkan et al., 2015).
he methodology described here can be employed to update these
tatistics when appropriate. The statistical results can be used for
ore accurate train safety and risk analyses, thereby enabling more

recise estimates of local and route-specific risk, and contribut-
ng to development of more effective risk reduction strategies to
mprove rail safety.
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ppendix A.

The rationale of the aggregation-based derailment rate analy-
is is illustrated using the following example. Assuming there are
wo track segments with the same: FRA track class (1, 2, 3, 4 or
), method of operation (non-signaled versus signaled) and annual
raffic density level (<20 or ≥20 MGT). On each segment, the num-
er of train derailments (Y1 and Y2, respectively) follows a Poisson
istribution. The observed accident count is described as a function
f the predictor variables:

1 = exp(�0 + �1X1 + �2X2 + �3X3)M1 + error1 (A.1)

2 = exp(�0 + �1X1 + �2X2 + �3X3)M2 + error2 (A.2)

here:
Y1 = observed number of train derailments on the first segment,
Y2 = observed number of train derailments on the second seg-

ent,
X1 = FRA track class (1–5),
X2 = method of operation (1 = signaled, 0 otherwise),
X3 = annual traffic density (1 = 20 MGT  or greater, 0 otherwise),

error1 = random error of accident count on segment 1,
error2 = random error of accident count on segment 2.
The sum of independent Poisson distributions also conforms

o a Poisson distribution (Agresti, 2007). Therefore, the sum of
erailments on the two segments (Y1 + Y2) also follows a Poisson
 Prevention 98 (2017) 1–9 7

distribution, that is:

Y1 + Y2 = exp(�0 + �1X1 + �2X2 + �3X3)(M1

+ M2) + (error1 + error2) (A.3)

Where, M1 + M2 is the total traffic exposure on the two segments.
Disaggregated model: Using this method, the two segments are

treated as two units of observations. The likelihood function for this
model is:

L1 =
[

exp(ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3)M1
]Y1

Y1!

exp(− exp(ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3)M1×

[
exp(ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3)M1

]Y2

Y2!

exp(− exp(ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3)M2

(A.4)

Eq. (A.4) is mathematically equivalent to Eq. (A.5):

L1 = exp (ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3)Y1+Y2M1
Y1M2

Y2

Y1!Y2!

exp[− exp(ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3)(M1 + M2)] (A.5)

Aggregated model: In this method, the aggregation of the two
segments is treated as one unit of observation. Its likelihood func-
tion is:

L2 = exp (ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3)Y1+Y2 (M1 + M2)Y1+Y2

(Y1 + Y2)!

exp(− exp(ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3)(M1 + M2)) (A.6)

Comparing L1 & L2, it is evident that the aggregated and disaggre-
gated models have the same maximum likelihood estimator (MLE)
derived from their respective likelihood. Therefore, the aggrega-
tion of multiple segments with the same features may  not affect
the estimation of parameter coefficients under certain conditions.
This assumption could be validated with more granular segment-
specific safety and traffic data, when such information becomes
available.

Appendix B.

Average car derailment rate can be estimated by multiplying
train derailment rate by average number of cars derailed per derail-
ment (Anderson and Barkan, 2004).

C∗ = m∗ × D∗

M
(B.1)

Where:
C* = estimated car derailment rate per traffic exposure
m* = estimated train derailment count given traffic exposure
D* = average number of cars derailed per train derailment
M = traffic exposure
The variance in estimated car derailment rate is denoted by

Var(C*). Assuming that estimated train derailment count and esti-
mated derailment severity are independent, Var(C*) is calculated
using the model developed by Goodman (1962):
Var(C∗) = [E(m∗)]2Var(D∗) + [E(D∗)]2Var(m∗) + Var(m∗)Var(D∗)
M2

(B.2)
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Table B1
Average number of cars derailed per freight-train derailment on Class I railroad
mainlines, 2005–2009.

FRA Track Class

1 2 3 4 5

Average Number of
Cars Derailed per
Derailment

5.3 7.3 8.5 9.3 10.0

Standard Error 0.3 0.7 0.9 1.2 1.4

Maximum Operating
Speed (mph) of
Freight-Trains

10 25 40 60 80

Table B2
Estimated car derailment rate per billion car-miles, Class I freight-train mainline
derailments, 2005–2009 (Italic numbers in the parentheses represent the standard
error of estimated car derailment rates).

Annual Traffic
Density (MGT)

Method of Operation FRA Track Class

1 2 3 4 5

<20 Non-Signaled 632 446 266 150 n/aa

(66) (55) (35) (23)
Signaled 451 318 189 107 59

(57) (43) (25) (16) (10)

≥20 Non-Signaled 298 210 125 71 39
(35) (29) (18) (12) (7)

Signaled 213 150 89 50 28

a

c
o
s
u
c

m
t
l
T
t
T
p

R

A

A

A

A

A

A

A

A

predictive accident models. Accid. Anal. Prev. 28 (3), 281–296.
(23) (18) (11) (7) (4)

a There were no instances of non-signaled, Class 5 track with less than 20 MGT of
nnual traffic.

The higher the FRA track class, the greater the average number of
ars derailed. It is probably due to the greater maximum allowable
perating speeds on higher track classes (Table B1). Track-class-
pecific number of cars derailed per derailment was calculated and
sed to estimate car derailment rate, measured by number of rail-
ars derailed per billion gross ton-miles.

The traffic volumes provided by railroads are in gross ton-
iles (GTM). A railroad-specific conversion factor was developed

o project car-mile data, for converting car derailment rate per bil-
ion gross ton-miles to car derailment rate per billion car-miles.
he conversion factor (91.61) was developed based on the gross
on-miles and car-miles statistics on Class I mainlines (2005-2009).
he results of estimated car derailment rate per billion car-miles are
resented in Table B2.
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